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Abstract

CITE-seq technology enables the direct measurement of protein expression, known as antibody-derived tags (ADT), in
addition to RNA expression. The increase in the copy number of protein molecules leads to a more robust detection of protein
features compared to RNA, providing a deep definition of cell types. However, due to added discrepancies of antibodies,
such as the different types or concentrations of IgG antibodies, the batch effects of the ADT component of CITE-seq can
dominate over biological variations, especially for the across-study integration. We present ADTnorm as a normalization
and integration method designed explicitly for the ADT counts of CITE-seq data. Benchmarking with existing scaling and
normalization methods, ADTnorm achieves a fast and accurate matching of the negative and positive peaks of the ADT
counts across samples, efficiently removing technical variations across batches. Further quantitative evaluations confirm that
ADTnorm achieves the best cell-type separation while maintaining the minimal batch effect. Therefore, ADTnorm facilitates
the scalable ADT count integration of massive public CITE-seq datasets with distinguished experimental designs, which are
essential for creating a corpus of well-annotated single-cell data with deep and standardized annotations.
Contact: raphael.gottardo@chuv.ch
Supplementary information: Supplementary data are available online.

1 Introduction
Cell type annotation in the single-cell analysis is a common problem
required for biological interpretation and downstream statistical analyses.
While much progress has been made in this area, current state-of-
the-art techniques still suffer from major limitations, including lack
of ground truth, reliance on limited reference datasets, and lack of
standard annotations. With CITE-seq (Stoeckius et al., 2017) and related
technologies (Shahi et al., 2017; Peterson et al., 2017; Mimitou et al.,
2019), more than a hundred proteins’ expression of individual cells can
be directly measured in addition to RNA expression or epigenomics
(Swanson et al., 2020; Zhang et al., 2022), facilitating robust and
deep cell-type annotation. Despite their extraordinary potential, protein
expression, measured by the antibody-derived tags (ADT) counts, is often
analyzed using tools developed for single-cell RNA-seq even though the
characteristics of the data are substantially different. ADT data, however,
are much less sparse and have a unique density distribution pattern with
a negative peak representing non-specific antibody binding and a positive
peak indicating the enrichment of specific cell surface protein. Therefore
scRNA-seq normalization tools are not directly applicable.

Apart from the library size and technical noises that other single-
cell modalities normalization methods usually account for, ADT counts
are also prone to the variability in antibodies, such as the antibody
types and concentrations, which changes dramatically across studies and
laboratories. Such batch effect hinders the aggregation of ADT data across
CITE-seq studies. However, few methods have been developed for this
modality. The most commonly used normalization approach is the centered
log-ratio (CLR) (Stoeckius et al., 2017; Hao et al., 2021) which mostly can

only take care of the library size variations. Mulè et al. (2022) introduced
the denoised and scaled by background (DSB) normalization method
developed specifically for ADT data. DSB can improve the visualization
of protein expression within an experiment but fails to properly normalize
data across experiments because it only focuses on aligning the negative
expression peak. In addition, it requires data from empty droplets to
estimate the background ambient noise, but public datasets are usually pre-
filtered, and low-quality cells are removed for the sake of data storage and
efficient data sharing. Additionally, Harmony has established effectiveness
for scRNA-seq batch removal Korsunsky et al. (2019); Tran et al. (2020)
and CytoRUV demonstrates advantages in removing library size batch
effects while strengthening biological signals for the flow cytometry data
Trussart et al. (2020). However, neither is tailored to the high-throughput
sequencing protein expression count data. Here, we proposed a functional
data analysis normalization method, called ADTnorm, for ADT count
data of CITE-seq related assays, building on methods that were originally
conceived for cytometry data, including fdaNorm and gaussNorm (Hahne
et al., 2010) that try to align landmarks in protein density profiles.

2 Materials and methods
To demonstrate the ADTnorm normalization and integration procedure
and benchmark with existing normalization methods designed for scRNA-
seq, flow cytometry, and CITE-seq ADT component, 15 public CITE-
seq datasets are utilized (Supplementary Table 1). The pipeline for the
surface protein expression normalization and integration across CITE-seq
datasets starts with CITE-seq sequencing data alignment and quality check
to remove low-quality cells, such as empty droplets, doublets, and cells
with high mitochondrial gene expression (Fig. 1A). Note that the scRNA-
seq component of CITE-seq in this paper is only utilized in the data quality
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Fig. 1. A. Overview of ADTnorm normalization and integration pipeline. B. Comparison of ADT counts density distribution in raw count scaled by Arcsine transformation and after
ADTnorm normalization for different types of surface proteins across CITE-seq datasets. C. Comparison of the low-dimensional embeddings depicting the batch effect with each CITE-seq
dataset as one batch. The colors of the plotting symbols in the UMAP visualization represent the datasets with the same datasets matching colors in B. D. Comparison of the low-dimensional
embeddings depicting the cell type separations before and after ADTnorm normalization. E. Benchmarking different ADT counts scaling and normalization methods regarding the cell type
separation and batch effect elimination, quantified by the Adjust Rand Index (ARI) and Silhouette scores. Grey arrows point to direction where the method performance is better. F. CD19
surface protein expression can be misleading manipulated after normalized by Harmony and CytoRUV in the 10X MALT dataset.

check and necessary cell filtering. The downstream analysis only includes
the ADT counts of CITE-seq data. ADTnorm normalizes ADT counts of
cells passing quality check by identifying the peaks and valleys of the
ADT count density distribution. Subsequently, functional data analysis is
implemented to align the negative peak, valley, and positive peak of ADT
density distribution across samples from different CITE-seq datasets. The
resulting normalized ADT counts are batch effect free and ready for across-
study aggregation. Additionally, the landmarks, including peak and valley
locations, detected during ADTnorm normalization can also be leveraged
to evaluate the ADT markers’ staining quality and facilitate the automatic
gating for cell-type annotation. Please refer to the Supplementary Note for
the ADTnorm model and implementation procedure details.

3 Result
Arcsine transformation is widely used in processing flow cytometry data
for better density visualization, which is also leveraged to show the raw
count of multiple CITE-seq datasets. We benchmarked ADTnorm with
CLR (Stoeckius et al., 2017), Harmony (Korsunsky et al., 2019), DSB
(Mulè et al., 2022), CytofRUV (Trussart et al., 2020) in terms of batch
effect elimination and cell type separation. Fig. 1B and Supplementary
Figs. 1-2 demonstrate the successful removal of variations for negative

peaks and positive peaks in each surface protein marker after ADTnorm
normalization compared to Arcsine Transformation and CLR scaling.
Additionally, ADTnorm can accommodate surface protein markers that
are not profiled in all the CITE-seq datasets to be integrated, which have
to be discarded by other normalization methods such as Harmony and
CytofRUV that cannot handle the missing data (Supplementary Figs. 3-4).
UMAP visualization further confirms the removal of the variations across
datasets while preserving the biological signals across cell types at both
broad and refined cell-type annotation levels (Fig. 1 C-D, Supplementary
Fig. 5). In addition to the low-dimensional embeddings visualization,
we also leveraged the Adjust Rand Index (ARI) and Silhouette scores
to quantitatively evaluate the cell type separation and the remaining batch
effect across studies. Fig. 1E illustrates that ADTnorm accomplished the
best cell type separation for both evaluation metrics, where the true cell
type labels were obtained by an orthogonal manual gating on the surface
protein in combination with the cell type annotation provided in the data
source paper. At the same time, ADTnorm achieves the minimal batch
effect as good, if not better than, as Harmony approach.

Apart from obtaining batch-free low-dimensional embeddings,
biologically reasonable normalized ADT counts are also needed for further
cell-type annotation and standardization. When scrutinizing the ADT
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counts after normalization by different methods, Harmony and CytofRUV
tend to manipulate the surface protein counts into an improper value range
(Fig. 1F). For instance, in the 10X MALT study, CD19 expression is
significantly lower for CD8 T cells than CD4 T after Harmony processing.
CytofRUV, on the other hand, even assigns a much higher CD19 value
to CD8 T cells compared to B cells. Additionally, CLR reduced the
separation between B cells and CD4 T cells regarding the CD19 expression.
Similar issues are observed on other protein markers, such as CD3, CD4,
CD8, CD25, CD45RA, and CD56, which are all critical lineage markers
(Supplementary Figs. 6-7). This re-emphasizes the importance of utilizing
the normalization methods tailored to CITE-seq ADT counts.

In summary, ADTnorm provides a fast, accurate and scalable approach
to normalizing the ADT counts of CITE-seq for within-study batch removal
and across-study integration. The method is also extended to incorporate
cytometry data with the CITE-seq data by removing the discrepancies
across technologies.
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