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Abstract 

 

Automated cell type annotation of single-cell RNA-seq data has the potential to significantly 

improve and streamline single cell data analysis, facilitating comparisons and meta-analyses. 

However, many of the current state-of-the-art techniques suffer from limitations, such as 

reliance on a single reference dataset or marker gene set, or excessive run times for large 

datasets. Acquiring high-quality labeled data to use as a reference can be challenging. With 

CITE-seq, surface protein expression of cells can be directly measured in addition to the RNA 

expression, facilitating cell type annotation. Here, we compiled and annotated a collection of 16 

publicly available CITE-seq datasets. This data was then used as training data to develop 

Superscan, a supervised machine learning-based prediction model. Using our 16 reference 

datasets, we benchmarked Superscan and showed that it performs better in terms of both 

accuracy and speed when compared to other state-of-the-art cell annotation methods. 

Superscan is pre-trained on a collection of primarily PBMC immune datasets; however, 

additional data and cell types can be easily added to the training data for further improvement. 

Finally, we used Superscan to reanalyze a previously published dataset, demonstrating its 

applicability even when the dataset includes cell types that are missing from the training set. 

 

 

Introduction  
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The emergence of single-cell genomics in recent years has enabled new levels of precision in 

analysis of the immune system, providing a deeper understanding of disease on a cellular level 

and furthering development of immunotherapy treatments and other therapeutics1–5. A 

fundamental component of single cell analysis is classification of the individual cells according 

to phenotype and developmental stage. This is typically an essential step for subsequent 

analysis, and has consequently been the focus of significant attention3,6,7. 

 

However, differentiation of immune cell types is often challenging to do from gene expression 

profiling alone (i.e. single-cell RNA sequencing, or scRNA-seq), as functional differences in cells 

are often not fully reflected in the transcriptome8,9. Correlation between gene expression and 

protein levels is not perfect; the Pearson correlation coefficient between mRNA expression and 

protein expression has been measured to be between 0.410 and 0.611. A number of 

computational methods for cell type annotation have been developed in recent years, many of 

which rely on mapping to a reference genome with pre-labeled cells, for example SingleR12, 

scMatch13, and SciBet14. However, the significant heterogeneity that can exist between 

datasets, particularly in the presence of disease, can limit the limit the range of applicability of 

these methods, and the generation of additional high-quality reference data with labeled cells 

can be challenging and expensive3,6.  

 

Other classification methods rely on a pre-defined set of marker genes for cell type annotation; 

for example Garnett15, CellAssign16, and SCSA17. While this improves performance in some 

cases, the reliance on canonical marker genes can be problematic, especially since many of 

those are based on published data from protein measurements which, as mentioned above, do 

not correlate directly with gene expression. While curated collections of marker genes for known 

cell types do exist18,19, they are not standardized or universal, and many cell types share marker 

genes, complicating the classification process. Classification tools that rely on marker genes 
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often require implementation of an unsupervised clustering step first. SCSA, for example, takes 

the pre-defined clusters as input then uses the top differentially expressed genes in each cluster 

to annotate the cells based on similarity to a provided list of marker genes. Some reference-

based methods include a necessary clustering step first as well; for example CellO20, which then 

annotates clusters using a model trained on reference bulk RNA-seq data. The requirement of 

an initial clustering step may cause problems in specific cases where datasets are relatively 

homogenous or when certain cell type populations are very small, in which case the 

differentially expressed genes may not map well to canonical marker genes.  

 

More recently, a number of multimodal single cell omics approaches have been developed, 

which allow integration and mapping of multiple data types on the single cell level21. These 

include, for example, T cell receptor (TCR) profiling, spatial transcriptomics, measurement of 

chromatin accessibility with single-cell ATAC-seq22–24, and profiling of protein expression in 

single cells with Abseq25 and CITE-seq26–28. CITE-seq (Cellular Indexing of Transcriptomes and 

Epitopes by sequencing), which uses oligonucleotide-labeled antibodies to measure surface 

protein expression of single cells, provides additional detail about cell function and phenotype 

independently of the transcriptome, enabling easier cell annotation based on direct protein 

expression. mRNA transcript expression is typically much lower, by several orders of 

magnitude, than protein expression11,29, and also has a much smaller range of expression; 

transcript copy numbers typically only span about two orders of magnitude, while protein copy 

numbers can span 6-7 orders of magnitude10,29. For these reasons, as well as the imperfect 

correlation between mRNA expression and protein levels, techniques such as Abseq and CITE-

seq improve on scRNA-seq for phenotype identification.  

 

While CITE-seq is still a relatively new technique, it is being rapidly adopted by the single cell 

community. Consequently, more and more datasets containing integrated proteomics data are 
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being published and made publicly available online, although the number and variety of proteins 

measured in each dataset can vary significantly. When sufficient antibodies are used for CITE-

seq measurements, granular cell phenotypes can be determined on a single cell level by gating 

cells according to cell surface protein expression, as is typically done with flow cytometry. CITE-

seq therefore allows easier comparisons of scRNA-seq data to published work that only uses 

protein markers, as in flow cytometry. Flow cytometry enables direct measurement of surface 

protein expression through the use of fluorochrome-conjugated antibodies, which can be 

detected with a light-scattering procedure. Cell populations can then be grouped and identified 

according to relative protein expression, typically through inspection of two-dimensional plots 

showing a few proteins at a time. Manual gating is therefore a subjective and often time-

consuming process. Efforts have been made to streamline the gating process with the inclusion 

of automatic techniques, which were reviewed and benchmarked by the FlowCAP Consortium 

and found to be effective in many cases30 when applied to flow cytometry data.  

 

Despite these limitations, the recent availability of public CITE-seq datasets have promising 

implications for scRNA-seq-based cell classification methods. A recent example of a 

computational technique that takes advantage of proteomics in cell annotation is Azimuth, a 

new classification method that uses a reference dataset where labels were generated from 

integrating proteomics and transcriptomics31. Other examples include CITE-sort32 and 

SECANT33, both of which take advantage of the antibody-derived tag (ADT) data indicating 

surface protein expression to annotate cells. However, CITE-seq is still a relatively new 

technology, and many scRNA-seq datasets do not yet contain protein expression data. 

Therefore, methods like CITE-sort and SECANT, both of which rely on the inclusion of ADT data 

to annotate cells, cannot be generalized to datasets containing only RNA information. Azimuth 

does have this ability, but relies on a certain degree of similarity between the new dataset and 

the reference in terms of cell type frequency and distribution; it would not, for example, work on 
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a homogenous dataset of a single cell type. This limits its potential for generalization to new 

tissue or sample types.  

 

As with traditional cytometry data, manual gating on the proteomic component of CITE-seq data 

can be used to generate reference labels independent of the gene expression data. Our goal is 

to take advantage of the additional surface marker information from CITE-seq datasets to build 

a supervised model trained on gene expression data that can annotate RNA-only datasets. In 

this work, we introduce Superscan (Supervised Single-Cell Annotation): a supervised 

classification approach built around a simple XGBoost model trained on manually labelled data. 

Superscan aims to reach high overall performance across a range of datasets by including a 

large collection of training data. This is in contrast to a method like CaSTLE34, which also 

employs an XGBoost model but requires specification of a sufficiently similar pre-labeled source 

dataset. To generate the training and testing data, two independent analysts performed manual 

gating on the corresponding proteomics data from 16 published single cell immune datasets, 

creating a public resource of several hundred thousand labeled cells that can be used freely for 

further research. 

 

Superscan is both faster and on average more accurate than the current leading classification 

methods, as measured against the labels generated manually from ADT data. While the training 

set currently includes a limited number of cell types, Superscan provides a confidence score 

along with each prediction that can be used in certain cases to identify cell types that are 

missing from the training dataset, as we show here with a Merkel cell carcinoma dataset. As 

more CITE-seq or pre-sorted datasets are generated and become publicly available, they can 

be added to the training set, expanding the number of included cell types and further improving 

the model performance. 
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Results  

 

Manual annotation of publicly available CITE-seq datasets 

 

To train an effective supervised classifier, our first step was to assemble as large a collection of 

datasets as possible that met our criteria: namely, that they were publicly available, included 

both RNA and ADT raw count matrices, and were of sufficient quality to enable phenotype 

differentiation based on the ADT assay (see Methods for further details). We collected a total of 

16 immune datasets (summarized in Table 1) and manually annotated cells based on the ADT 

data to generate labels. Manual gating was performed following the framework of Maecker, 

McCoy, and Nussenblatt 2012. An example of the gating process is shown in Figure 1a. For 

each cell, broad and fine labels were generated (a list of all labels can be found in 

Supplementary Table 1), as well as quality scores from 1 (low) to 3 (high) indicating our 

confidence in each label based on the proteomics data quality.  

 

To visually verify the consistency of the manually defined labels, we generated UMAP plots for 

each dataset. Figure 2 shows several of these example single cell datasets where the UMAPs 

have been generated based on gene expression (after PCA transform) and surface protein 

expression alone, colored by the manual labels. Clustering on protein expression data clearly 

provides superior distinction among immune cell types; CD4 and CD8 T cells, for example, 

cluster together on the RNA UMAPs because of similar transcriptional profiles, but are 

separated into distinct groups on the protein UMAPs. This result is expected, given that the 

manual labels were generated from the protein data, but does reinforce the fact that surface 

protein expression is able to better distinguish cell phenotypes, motivating our choice to use the 

ADT data to generate reference labels. 
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Supervised annotations from RNA can recapitulate broad phenotypes 

 

Our goal in developing Superscan was to create a supervised prediction model that would be 

broadly applicable to any immune single-cell dataset with RNA measurements, and that could 

be expanded upon to include additional cell and tissue types in the future. For this reason, we 

used as many public datasets that we were able to label based on our manual gating strategy 

and developed the model so as to be able to easily incorporate additional training datasets as 

they become available.  

 

The methodology for training and evaluation is outlined in Figure 1b. For feature and parameter 

optimization, 14 datasets were combined and randomly split into a 70% training set and 30% 

testing set. The remaining two datasets were removed due to low ADT quality (see Methods for 

further details). The features and parameters identified at this step were then used to test the 

model on each dataset: for these 14 datasets, each one was held out individually, and the 

model was trained on the remaining 13 datasets. To test the two datasets that were originally 

left out of training (arunachalam_2020 and fournie_2020), the model was trained on all 14 

original datasets.  

 

Results for broad and fine labels from this holdout procedure are shown in Figure 3a. As 

expected, overall accuracy when predicting broad labels (median accuracy 0.958) is higher than 

when predicting fine labels (median accuracy 0.857). This is likely partially due to higher 

categorical representation (with fewer categories, each class will encompass more cells). Also, 

some datasets did not have enough proteins measured in order to define certain finer 

phenotypes (see number of proteins measured for each dataset in Table 1), further reducing the 

number of cells in each class in the training set. We expect that adding additional high-quality 
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training data where finer phenotypes can be clearly distinguished would improve Superscan’s 

performance on fine labels. 

 

Figure 3b shows the broad label accuracy per dataset, colored by the average quality score 

(calculated by averaging the quality score for every labeled cell per dataset). As already 

mentioned, arunachalam_2020 and fournie_2020 have the lowest overall average quality 

scores, which is why they were removed from the training data. In general, lower quality scores 

tend to correlate with lower accuracy scores. For many of the datasets, the overall average 

quality score was lower for the fine labels than for the broad labels (see Supplementary Figure 

1a). This may be due to more noise in the data for the necessary markers, e.g. caused by poor 

antibody staining quality. 

 

Superscan out-performs competing algorithms in terms of speed and accuracy 

 

Quite a few computational cell annotation packages have been developed in recent years; here, 

we compared some of the most common and more recent classifiers to our XGBoost-based 

model, chosen in part based on benchmarking performed in Refs. 7 & 17. The classifiers that 

we tested were SingleR12, Garnett 5, CellAssign16, CellO20, scMatch13, and Azimuth31. Since 

each classifier will output different cell labels to varying degrees of specificity, here we 

compared only broad labels, and mapped classes to general B cells, T cells, dendritic cells 

(DCs), natural killer (NK) cells, or monocytes. Labels that could not be generalized to these 

categories were relabeled as ‘other’. Accuracy scores for each classifier and dataset are shown 

in Figure 3c. Superscan outperformed all other classifiers; SingleR and Azimuth also performed 

consistently well in general. 
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To assess run time, one of the larger datasets (su_2020) was downsampled and classifier 

speed was measured. Results are shown in Figure 3d. Superscan is faster than all others by 

more than an order of magnitude. In this case, we only compare up to 50,000 cells; on the 

machine used, datasets containing 100,000 cells or greater had to be broken down into smaller 

subsets in order to be run when some of the classifiers. This is not an issue for Superscan; 

when run on a dataset of 1 million cells, classification was completed in just over 2 minutes 

(122.1s), indicating excellent scalability with dataset size. 

 

Figure 4a illustrates the most important features from the XGBoost model for each broad cell 

type (see equivalent for fine cell types in Supplementary Figure 2). Reassuringly, many of the 

top genes correspond to well-known marker genes. Looking at B cells, for example, high gene 

expression values of MS4A1 (CD20) and CD79A, both known markers for B cells, have a high 

median SHAP value, indicating that high expression of these genes will push the model towards 

classifying a given cell as a B cell. Similarly, low values of CD19, another B cell marker, 

correspond to negative SHAP values, indicating that low CD19 expression discourages B cell 

classification. Similar clear trends are seen with CD4 and CD8 T cells; low expression of CD8A 

and CD8B support classification as CD4 T cells, while high expression of CD8A and CD8B 

support classification as CD8 T cells, as expected. 

 

Classification accuracy greatly varies by cell type 

 

We next examine Superscan’s performance by cell type, shown in Table 2, based on a 

randomized 70/30 train/test split of the data (again removing low quality and unlabeled cells). 

Looking at the broad labels, dendritic cells clearly have the worst performance, both in terms of 

precision and recall. However, they also have the lowest representation of all cell types, with 

fewer than 3,000 DCs out of a total of ~101,000. B cells have the highest performance, despite 
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comprising only ~11,000 cells. In general, though, from the fine labels, we can see that cell 

types that occur less frequently in the data tend to be predicted with lower accuracy. This 

implies that adding additional high-quality training data containing these less frequent cell types 

could improve performance in the future. 

 

The average accuracy (recall) and quality score by cell type is shown in Figure 4b, now 

including all cells (not just those with medium or high quality scores). Dendritic cells and NK 

cells, both of which perform significantly worse than the other broad cell types, have lower 

average quality scores as well, indicating that labeling of those cell types based on proteomic 

data quality was more difficult, potentially explaining the worse performance.  

 

In addition to cell classification, the XGBoost model (as implemented in Superscan) can output 

a vector of probabilities, representing the probability that a given cell belongs to each cell type 

(these probability values are closely related to the SHAP values shown in Figure 4a). The 

entropy of these probability values can give an indication of the confidence of the prediction for 

a given cell. A case where one class has very high probability and the others have low 

probability would result in a low entropy value, indicating high confidence in the prediction. High 

entropy values, conversely, indicate lower confidence in a given prediction. Figure 4c shows the 

distribution of normalized entropy scores (defined in Methods) by cell type. Reassuringly, the 

lowest performing cell types, e.g. DCs and NK cells, also have the highest average entropy 

scores, indicating lower confidence in those predictions.   

 

Superscan enables the annotation of unlabeled cells  

 

So far, we have only looked at classifier performance on cells with defined labels; however, not 

all cells were able to be manually labeled according to our gating scheme. These unlabeled 
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cells may be cells of entirely different phenotypes, or they may be cells that fall into one of our 

defined cell types with insufficient or low-quality protein data. Visualizing the predicted cell 

labels on UMAPs generated from the ADT data (two examples shown in Figure 5a and 5b) can 

indicate how these unlabeled cells are being classified. Promisingly, the predicted cell labels 

appear to match well to established clusters. In the kotliarov_2020 data, for example, the 

unlabeled cells that fall into the monocyte cluster are predicted to be monocytes, and the 

unlabeled cells in the CD8 T clusters are mostly classified as CD8 T cells. This being said, 

many unlabeled cells are also higher-entropy, possibly corresponding to cells of different 

phenotypes (Figure 4c). Looking at the distribution of normalized entropy scores in Figure 5c, 

cells with higher scores are generally associated with misclassifications, unlabeled cells, and 

dendritic cells (as seen previously), indicating that the model is less confident in those 

predictions.  

 

Quantifying prediction uncertainty with entropy scores 

 

To gain more quantitative insight into the connection between the normalized entropy score and 

accuracy, we consider the effect of incorporating an entropy score cutoff.  Figure 5d shows the 

resulting accuracy score after removing all cells that were predicted with a normalized entropy 

score above the specified cutoff for a 70/30 train/test split sample, where unlabeled cells are 

included in the testing set. Unlabeled cells account for 13.3% of the broad labels and 19.5% of 

the fine labels in the testing set, so the highest possible accuracy when all cells are included 

(i.e. a normalized entropy cutoff of 1) would be 0.867 and 0.805, respectively. When the 

normalized entropy cutoff is set to 0.05, the accuracy score rises to ~0.9 from ~0.83 and ~0.8 

from ~0.66 for the broad and fine labels respectively. Reassuringly, this cutoff still preserves 

86.6% of the cells (broad labels) and 69.3% of the cells (fine labels). Cells with normalized 

entropy scores below 0.05 should be considered to be classified with high confidence, while 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.445014doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.445014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

normalized entropy scores between 0.05 and 0.3 indicate moderate confidence, and entropy 

scores above 0.3 correspond to low confidence. Accordingly, in addition to the normalized 

entropy score for each prediction, Superscan will also assign a confidence level of “low”, 

“medium”, or “high” based on the normalized entropy value.  

 

Entropy scores can be used to identify previously unseen cell-types 

 

We next show an example of how Superscan can be applied to a new scRNA-seq dataset even 

when it includes cell types that were not in the original training model. We use a Merkel cell 

carcinoma dataset35 with two patients (discovery and validation), which contains a PBMC and 

tumor sample for each patient (UMAPs of each patient shown in Figure 6a). Superscan 

predictions are shown in Figures 6b and 6c. Most of the cells from the PBMC samples are 

classified into fairly well-defined clusters with relatively low entropy scores, with the exception of 

the cluster of cells indicated with the dashed circle on the UMAPs. These cells are not 

consistently labeled and have very high normalized entropy scores, indicating low confidence in 

the predictions. Simple differential expression analysis run on the clusters indicates that these 

are erythrocytes, a cell type not included in Superscan’s training data.  

 

Similarly, the large clusters in the tumor samples are also classified with high normalized 

entropy scores (the other small clusters in the tumor samples are expected to be immune cells 

in the tumor microenvironment). From this data, then, we can easily identify the clusters that 

correspond to tumor cells. Labeling these large clusters as tumor cells and the circled cluster as 

erythrocytes, we can see that the distribution of entropy scores is in fact significantly higher than 

the other predicted cell types (Figure 6d). Of course, some prior knowledge of the sample 

composition was required here, but this example demonstrates that in such cases (where one or 
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two cell types are expected in the data but not included in Superscan’s model) the normalized 

entropy score can be used to identify the missing cell types. 

 

To study further how the model would perform on a new cell type, we can remove one cell type, 

for example monocytes, from the training data. This would force all monocytes to be classified 

as one of the other 5 cell types. We can then look at the probability scores for the true 

monocytes after prediction, shown in Figure 6e. The average entropy is now significantly higher 

than the other cell types, with very few cells being (mis)labeled with high confidence, with the 

exception of CD4 and CD8 T cells, which get misclassified (confidently) as each other. A similar 

situation occurs for fine cells subsets that are part of the same lineage; for example, memory 

CD8 T cells get classified as mostly naive CD8 T cells, and to a lesser extent memory CD4 T 

cells, with low uncertainty. However, in most cases, the removed cell type is classified with 

higher uncertainty (entropy) than in the original model. This confirms that the entropy scores can 

be used when applying Superscan to datasets that may contain cell types not included here to 

give some indication of the prediction confidence.  

 

Discussion  

 

In this work, we took advantage of the recent availability of CITE-seq immune datasets, which 

provide a means of generating a labeled training set independently of gene expression. The 

manually labeled datasets are available for public use and exploration. Using this as training 

data, we developed an automated classifier, Superscan, which is fast, scalable, and easy to 

use. 

 

An important qualification is that the manual gating performed to obtain the cell labels for 

training and comparison is necessarily an imperfect process which relies on some degree of 
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subjectivity. To perform manual gating effectively requires a well-defined set of surface markers 

for each desired phenotype, which can be challenging; the development of a set of universally 

agreed-upon marker proteins is still ongoing. Even apart from the fact that cell markers for some 

cell subsets are not well-defined (e.g. regulatory T cells, dendritic cells (DCs), and natural killer 

(NK) cells), different markers can be used to differentiate well-defined cell subsets, such as the 

use of CCR7 or CD45RA/CD45RO for defining naive and memory T cells36. Finally, deciding 

whether a cell is positive or negative for a given marker requires choosing a threshold which 

often is not clearly evident from the data, given the potentially high level of background noise 

resulting from imperfect antibody staining. Antibody titrating is resource-intensive and therefore 

commonly not performed, resulting in lower-than-ideal data quality37. 

 

Although we attempted to moderate this by including quality scores for each label, it is ultimately 

impossible to determine a complete ground truth for these datasets. In many cases, datasets do 

not have sufficient antibodies to determine finer cell subtypes (see Table 1), limiting the 

comprehensiveness of our labels. The range of performance among datasets seen in Figure 3, 

therefore, is expected. The average quality scores by dataset for the fine labels, as well as 

average normalized entropy scores by dataset for both broad and fine labels is shown in 

Supplementary Figure 1, where it can generally be seen that datasets with lower average 

quality scores also tend to have lower overall accuracy scores and higher average normalized 

entropy scores. We do expect that as more high-quality data with higher numbers of markers 

becomes available, less subjectivity will be required for identifying phenotypes, which should 

reduce uncertainty in the training set and therefore improve the model. 

 

Superscan is pre-trained on the 14 datasets discussed here and outlined in Table 1; however, 

we hope to add to the number of training datasets over time. A clear limitation to the current 

version of Superscan is its inclusion of mostly only PBMC samples and only 6 major immune 
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cell types (due to limited data availability). As shown in Figure 6, inferring new cell types is 

possible with some pre-existing knowledge, and there is some indication that cells in different 

sample types (e.g. tumor microenvironment) can also be classified with Superscan. However, 

we aim to include additional data to the model as high-quality CITE-seq datasets become 

available, or with pre-sorted datasets. This should ultimately be able to improve the range of 

applicability, as well as improve overall performance. The poor performance with dendritic cells, 

for example, is likely at least partially due to the limited number of dendritic cells in the training 

data. Adding additional high-quality data should therefore improve the performance of 

Superscan overall. 

 

As Superscan classifies cells on the cell level, it is robust across datasets, regardless of the cell 

type distribution, for example in a homogenous dataset where all the cells are one type (unlike 

classifiers such as Azimuth, for example). We also note the scalability of Superscan: it can 

classify large datasets in a matter of seconds, as the model is pre-trained. It requires 1000 

features to run; however, complete overlap with all 1000 features is not necessary since missing 

values are acceptable within the XGBoost framework. Superscan is freely available for 

download (see Data Availability). 

 

Methods  

 

Dataset preprocessing and manual gating 

 

A total of 16 published CITE-seq datasets, containing both scRNA-seq and ADT data, were 

collected for training and testing of Superscan. Three datasets were obtained directly from the 

10X Genomics “Chromium Demonstration (v3 chemistry)” public collection: 10X_malt_10k (10k 

Cells from a MALT Tumor - Gene Expression and Cell Surface Protein), 10X_pbmc_10k (10k 
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PBMCs from a Healthy Donor - Gene Expression and Cell Surface Protein), and 10X_pbmc_1k 

(1k PBMCs from a Healthy Donor - Gene Expression and Cell Surface Protein). Two were 

obtained from the 10X Genomics “Chromium Next GEM Demonstration (v3.1 Chemistry)” 

collection: 10X_pbmc_5k_nextgem (5k Peripheral blood mononuclear cells (PBMCs) from a 

healthy donor with cell surface proteins (Next GEM)) and 10X_pbmc_5k_v3 (5k Peripheral 

blood mononuclear cells (PBMCs) from a healthy donor with cell surface proteins (v3 

chemistry)). The remaining datasets were from the following publications: arunachalam_202038, 

butler_201939, fournie_202040, granja_2019_bmmc & granja_2019_pbmc41, hao_202031, 

kotliarov_202042, stoeckius_201726, su_202043, wang_202044, and witkowski_202045. No 

additional preprocessing or normalization was performed.  

 

All datasets were comprised of immune cells, sampled from mostly peripheral blood 

mononuclear cells (PBMCs), as well as some cord blood mononuclear cells (CBMCs) and bone 

marrow samples. Details for each dataset, including the number of cells and proteins measured, 

can be found in Table 1. Two of the datasets (arunachalam_2020 and su_2020) contained data 

from COVID-19 patients as well as from healthy donors; in those cases, only the data from 

healthy patients was kept, to avoid severe heterogeneity in the immune system arising from 

disease. This was also done to avoid over-weighting any one particular dataset (the su_2020 

dataset has over 500,000 cells). The number of proteins measured varies significantly among 

datasets, affecting the granularity of cell phenotypes that could be identified. 

 

Manual gating was performed and verified by two independent analysts following Ref. 36, and 

as partially shown in Figure 1 (larger version in Supplementary Figure 3). Gating was performed 

on ArcSinh-transformed ADT raw counts using FlowJo software (FlowJo, LLC). Markers used to 

gate each cell type are shown in Supplementary Table 1. Two levels of cell labels (broad and 

fine) were generated for each dataset. Only immune cell types were identified: B cells, CD4 and 
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CD8 T cells, dendritic cells, monocytes, and NK cells. Cells that did not meet the gating criteria 

for any of these cell types were left as ‘unlabeled’ and removed from the training data. This 

occurred when the proteomics data was not sufficient to identify the cell type (or when the cell 

type fell outside of our scope of immune cells). For example, according to our gating scheme 

(Supplementary Table 1), CD27 is used to differentiate between naive B and memory B cells. 

However, not all datasets contain ADT data for CD27 (stoeckius_2017, for example). B cells in 

those datasets therefore will not have a fine label.  

 

For each label, a quality score was assigned that reflected the confidence of our label, based on 

antibody staining quality, number of cells, and clear separation between populations. The 

number of antibodies measured (see Table 1) as well as the staining quality varied significantly 

across datasets, so our confidence in the gating (reflected by the quality scores) varied 

accordingly. Quality scores ranged from 1 to 3, with 3 corresponding to high quality/confidence. 

Scores of 3 were given to cells where there were clear bimodal distributions of well-defined 

subsets (based on protein expression), allowing us to clearly delineate a well-defined biological 

population. A score of 1 was assigned when the protein distribution was not bimodal, making 

the gate difficult to determine, or when a gate encompassed less than 10 cells. Scores of 1 were 

also assigned when the staining was of poor quality and therefore expression levels overall 

were low. Quality scores of 2 were assigned for cases that fell in between the criteria set for 1 

and 3.  

 

XGBoost implementation 

 

XGBoost (eXtreme Gradient Boosting) is an ensemble, regression-tree based model developed 

several years ago46. Here, we use the Python implementation of XGBoost, with the scikit-learn 

wrapper47. The model was trained on a data frame constructed from the raw gene expression 
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counts matrix; no preprocessing was required. Parameter optimization was performed with the 

scikit-learn randomized search function, using 3-fold cross-validation; final parameters used 

were gamma = 0, max_depth = 11, reg_lambda = 2, eta = 0.4, alpha = 0, and n_estimators = 

350. The top 1000 features were extracted using the scikit-learn feature_importances_ attribute. 

SHAP (SHapley Additive Explanations) values were computed using the shap Python 

package48. Probability vectors for each prediction were extracted using the scikit-learn 

predict_proba function, and entropy scores of each vector were calculated. By normalizing the 

entropy by log(n), where n is the total number of classes included in the model, we have a 

standardized value, the normalized entropy, (also called efficiency), which can be used to 

compare prediction confidence across groups.  

 

Initial model development and optimization 

 

For initial training and testing of the model, we removed two of the 16 datasets, 

arunachalam_2020 and fournie_2020, which had the lowest overall proteomics data quality 

(based on our assignment of quality scores). We also removed all cells with a quality score of 1 

(low), and cells taken from COVID-19 patients (as mentioned previously). This left 

approximately 340,000 cells. For initial development and optimization of the model, we took a 

random subset of 70% of the cells to use as training, with the remaining 30% held out for 

testing. Five-fold cross validation was performed. Seven pre-built classification models were 

initially tested: XGBoost, Random Forest, Decision Tree, Extra Tree, AdaBoost, SVC (support 

vector classifier), k-nearest neighbors (KNN), and a Multilayer Perceptron (MLP) neural net (see 

Supplementary Figure 4). XGBoost was chosen as the final model due to its superior 

performance on both accuracy and run time.  
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Feature selection was done by selecting a subset of genes based on the feature importance 

output from the XGBoost classifier and removing mitochondrial and ribosomal genes. We found 

that using the top 1000 features gave the best performance (in addition to significantly speeding 

up the classifier). We then performed a randomized search to determine the optimal 

parameters. Both of the above steps were performed using the 70/30 train/test split of the data 

as described above, and with 5-fold cross-validation. This was done separately for the broad 

labels and the fine labels, resulting in an optimized set of parameters for the untrained (at this 

point) model.  

 

To test performance by dataset, for the original 14 datasets, the model was then trained on the 

remaining 13 datasets, with the held-out dataset used for validation. To test the remaining two 

datasets (arunachalam_2020 and fournie_2020), the model was trained on all 14 original 

datasets, which produced the final version of Superscan. Cells with low quality scores were 

removed from the training data in all cases, as described above, but testing was performed on 

all labeled cells. For validation, the model was evaluated on overall classification accuracy: the 

percentage of cells labeled correctly. For each class, precision and recall were reported in order 

to examine the model’s performance when predicting less frequent cell types. Consistent 

performance across different datasets is one of our evaluation criteria as well.  

 

Since Superscan is pre-trained, classification of new data can be done extraordinarily quickly. 

Superscan requires 1000 specific genes for classification which can be easily subset from any 

new dataset, meaning training of a new model based on available genes isn’t necessary, unlike 

with classifiers such as CellO. Furthermore, since XGBoost can easily handle missing values, it 

is not strictly necessary that a new dataset to be annotated contain all 1000 genes.  

 

Comparison to other cell type labeling tools 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.445014doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.445014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 

For each cell annotation tool tested, any required data preprocessing as outlined by the relevant 

package was performed (e.g log-normalization, computation of size factors). Default immune 

reference datasets or marker gene sets were chosen where necessary: the Monaco immune 

dataset reference was used for SingleR49, and the default Functional Annotation Of The 

Mammalian Genome 5 (FANTOM5) reference50 was used for scMatch. For Garnett, the pre-

trained PBMC classifier and marker file were used (hsPBMC), and the default marker genes 

were used for CellAssign. The hao_2020 dataset is the reference data used for Azimuth, and so 

that point is excluded. All classifiers were run on the single-cell level, where possible, and 

default parameters were used (where applicable). In measuring computational speed, only the 

actual classification step or function was measured, where possible. All classifiers were run on 

an 8-core machine. In the case of CellO, the model was pre-trained, so that the measured 

execution time did not include model training.  

 

Data availability 

 

Superscan was implemented in Python3, and is available on Github: 

https://github.com/cshasha/superscan. Labeled datasets can be downloaded from https://fh-pi-

gottardo-r-eco-public.s3.amazonaws.com/SingleCellDatasets/SingleCellDatasets.html. 
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Figures 

 

 

 

Figure 1.  Methodology for manual gating and model training. A. Example bivariate plots 

showing gating strategy. Gates were drawn in FlowJo according to the protein markers outlined 

in Supplementary Table 1. B. Methodology for model training, testing, and validation. Data 

breakdown for initial model development process (feature engineering and parameter 

optimization) is shown on the left, and the process for validating the model by dataset is shown 

on the right. 
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Figure 2.  UMAPs of three datasets generated from gene expression and protein expression. 

UMAPs generated from protein expression result in clearer separation between clusters in all 

cases. A (top): UMAPs generated from RNA only, colored by manual labels. B (bottom): UMAPs 

generated from protein data only, colored by manual labels. Three datasets shown (left: 

kotliarov_2020, middle: butler_2019, right: hao_2020). 

 

 

 

a.

b.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.445014doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.445014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 

 

Figure 3.  Classification accuracy of Superscan and comparisons to benchmark methods. A. 

Superscan performance by dataset, broad and fine labels. B. Accuracy of broad labels by 

dataset, colored by mean quality score of all cells in the dataset. C. Accuracy scores by dataset, 

colored by cell annotation methods. D. Run time for each cell annotation method, as a function 

of dataset size (data randomly downsampled from su_2020). 
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Figure 4.  Superscan evaluation metrics by cell type. A. Feature importance for each broad cell 

type: median SHAP value, ranked by mean(|SHAP value|), colored by standardized expression 

value log(cpm)/max(log(cpm)). All values averaged over 5-fold CV. B. Accuracy scores (recall) 

by cell type, colored by mean quality score. C. Normalized entropy scores for each cell type. 

 

a.
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Figure 5.  Visualization of Superscan’s performance on unlabeled cells. The normalized entropy 

score can be used as metric for the model’s confidence in a given prediction. A. UMAPs 

generated from protein data, colored by manual labels. Two datasets shown (left: 

kotliarov_2020, right: butler_2019). B. UMAPs generated from protein data, colored by predicted 

labels from Superscan. C. UMAPs generated from protein data, colored by normalized entropy 

score from Superscan. D. Accuracy score as a function of normalized entropy cutoff. 
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Figure 6.  Results from Superscan run on a Merkel cell carcinoma dataset. A. UMAPs of 

discovery/validation patient, colored by sample type (dataset: paulson_2018). B. UMAPs of 

discovery/validation patient, colored by Superscan predicted labels. Dashed circle indicates 

erythrocytes. C. UMAPs of discovery/validation patient, colored by Superscan normalized 

entropy scores. Dashed circle indicates erythrocytes. D. Normalized entropy scores by cell type 

for discovery/validation patient. Dashed circle indicates erythrocytes. E. Normalized entropy 

scores by broad cell type, when cell type was (original) and was not (removed) included in the 

training data. 

 

 

a.

d.

b. c.

e.



 28 

Tables 

 

Table 1: Summary of public datasets, including tissue type, number of cells used (i.e. only 

healthy patients from arunachalam_2020 and su_2020), and number of proteins measured with 

CITE-seq. Asterisks indicate datasets that were not included in Superscan’s training data. 

 

name tissue # cells # proteins 
10X_malt_10k PBMC 8412 17 
10X_pbmc_10k PBMC 8201 17 
10X_pbmc_1k PBMC 713 17 
10X_pbmc_5k_nextgem PBMC 5527 32 
10X_pbmc_5k_v3 PBMC 5247 32 
arunachalam_2020* PBMC 30870 39 
butler_2019 BM 33454 25 
fournie_2020* PBMC 5559 12 
granja_2019_bmmc BM 12602 21 
granja_2019_pbmc PBMC 14804 21 
hao_2020 PBMC 161764 224 
kotliarov_2020 PBMC 58654 87 
stoeckius_2017 CBMC 8617 13 
su_2020 PBMC 44385 192 
wang_2020 PBMC 1372 10 
witkowski_2020 BM 42621 84 

 

 

Table 2 Superscan performance by broad (a) and fine (b) cell type, with unlabeled cells 

removed from training and testing. 

 

a. precision recall f1-score support 
B 0.99 0.99 0.99 10937 
CD4 T 0.97 0.97 0.97 35603 
CD8 T 0.94 0.97 0.95 19960 
DC 0.82 0.90 0.85 2792 
NK 0.96 0.94 0.95 5028 
Monocyte 0.99 0.96 0.97 27517 
     
accuracy   0.97 101837 
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b. precision recall f1-score support 
CD16+ NK 0.97 0.93 0.95 4511 
CD16- NK 0.54 0.73 0.62 333 
Treg 0.60 0.81 0.69 1111 
Classical monocyte 0.98 0.96 0.97 25213 
Intermediate monocyte 0.60 0.77 0.67 1101 
Memory B 0.75 0.76 0.76 1655 
Memory CD4 0.88 0.88 0.88 12948 
Memory CD8 0.80 0.79 0.79 6660 
Conventional DC 0.59 0.84 0.70 851 
Naive B 0.92 0.92 0.92 5830 
Naive CD4 0.91 0.87 0.89 12652 
Naive CD8 0.85 0.88 0.86 10253 
Non-classical CD16+ monocyte 0.86 0.76 0.80 827 
Plasmacytoid DC 0.98 0.92 0.95 354 
     
accuracy   0.89 84299 
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